
About the Course

Overview

The high level goal of this course is to learn how to transition from coding for
courses to coding in the real world.

The Plan

• Object Oriented Programming (review)
• Advanced Java
• Tools of professional development
• Design patterns
• Clean coding practices
• Software development processes
• …and more?

What do I know about the real world?

A lot! Teaching is my hobby; writing code is what I actually do for a living. I
am teaching you the things I wish I had known when I graduated.

What people say about CSC-430

“Candidates used to struggle to get through the technical portion of
interviews…now the technical questions are largely useless, because
students do so well now…”

What people say about CSC-430

“…we started probing the students to find out what had changed and
the answer was CSC-430”

A local employer (paraphrased)

Grading

Component Weight
Assignments 68%
Exams 28%

1

Component Weight
Misc 4%

Textbooks

For this course, we will be using the following textbooks, in addition to free
online resources:

• Head First Design Patterns, 2nd Edition, Freeman & Robinson
• Effective Java, 3rd Edition, Bloch

Resources II

You are expected to read everything that is assigned. If you don’t:

• Do plan on failing.
• Do not plan on sympathy.

Help

Don’t be afraid to ask questions!

I am available during my office hours and online throughout the day via email
and the #csc430 slack channel.

Additional office hours can be planned in advance, so contact me!

Help II

Don’t be afraid to ask questions!

Help III

Don’t be afraid to ask questions!

Important Class Policies

• Late submission penalty: 50%
• Plagiarism will be punished as severely as possible

2

http://msucsis.slack.com

Staying Up To Date

Canvas will be used to handle the general organization of the course and all
critical announcements.

Other reminders, notes, etc. may be distributed via twitter @msupwright4 and
slack.

Final Note

My goal is to push you hard. Easy classes are not worth the money you are
paying and a degree with no actual skills is worthless.

Be responsible. Ask questions. Do your work.

How You Code Now

Why Are We Here?

To understand why this class exists, we need to first analyze how you code now,
and then we can talk about why this does not scale beyond the classroom.

Code Volume

Most of your coding experience probably consists of projects with less than 100
lines of code.

How do you manage this code?

Code Volume II

Code Contribution

Code Volume III

Code Contribution

3

http://twitter.com/msupwright4

Code Volume IV

Some line counts for a few projects I work on:

• 20,185
• 269,924
• 271,335
• 173,568

Code Volume V

At these sizes, just working with the code (distributing, sharing, etc.) becomes
a non trivial task.

We need a way to backup our code, track changes, and avoid conflicts with
coworkers–at scale.

Testing

How do you test your course projects?

Testing II

Manually testing large codebases is, literally, not possible without doing a poor
job.

The number of paths in your code to test grows exponentially! If the time you
spend testing does not, then you are not testing your code.

Testing III

Even writing tests for large codebases is not possible if the code is written poorly.

Accordingly, we need to automate testing and write our code in a way that
makes it feasible to write sufficient tests.

Building

How do you build your code?

Do you even know how you build your code?

4

Building II

As projects grow in size and complexity, even compiling, building, and deploying
your code becomes a problem.

We can not rely on manual steps!

Building III

Instead, we must automate the build process (including testing!) to ensure
that we can deliver code in a reproducible, safe way.

Ideally, we automate deployment as well.

Maintenance

How hard is it to maintain your code after a year?

You don’t know, because you throw it away after a week!

Maintenance II

In the real world, your code will live for years (or decades) and will have to be
maintainable by the unlucky individual that gets stuck with your legacy code.

Maintenance III

Often, you are that unlucky individual.

Also often, you will not even understand your code if you are not careful with
how you write it.

Maintenance IV

Time Travel

Solution

We can largely conquer these problems (and more) by simply caring about our
code and automating all the things.

5

Course Thesis

Humans suck at coding and we must humbly accept all of the help
we can get from tools, processes, etc.

Intro To Maven

Maven

According to its own website…

Apache Maven is a software project management and comprehension
tool […] can manage a project’s build, reporting and documentation
from a central piece of information

Maven II

We will boil that down to the following, though:

Maven is a dependency management and build tool.

Dependency Management

What is dependency management?

Dependency Management II

Code you work on for your courses is often completely self contained, in one or
two class files.

You will typically only be importing other classes from the standard library.

Dependency Management III

In a real world project, though, you will typically be relying on a significant
amount of code written by others.

Dependency Management IV

This code will be packaged in jar files which you will need to have available
when building and distributing your code.

6

Dependency Management V

In the bad old days, this meant:

• You had to find the libraries
• You had to download them
• You had to keep track of them
• You had to ensure their dependencies are included
• You have to make sure to include them properly when compiling you code

Dependency Management VI

This may not sound to bad, but on large scale projects, this can be a huge source
of problems!

Dependency Management VII

A dependency manager will allow you to provide a small amount of configuration,
and it will then handle all of these problems for you in an automated manner.

Build Tools

When we talk about a build tool, we are generically referring to any tool that
allows you to provide a configuration (or script), which can then handle all build
steps that are necessary to produce your end product.

Build Tools II

For instance, you could use a build tool to trigger dependency management,
compile your code, execute automated tests, package your compiled code, and
more!

Automation

A keep theme here is automation.

If our build process is too complicated, we will forget steps and make mistakes.

This will lead to inconsistencies and errors.

7

Automation II

Complex manual processes also make it difficult to work with collaborators,
because it takes significant work just to get the code running the same on all
developer machines.

Automation III

Instead, we use a clear, precise configuration and feed it to a build tool to
guarantee that we have reproducibility anywhere our code is built.

This also allows us to reduce our build process to a single command!

Maven III

There are usually multiple build tools that can be used for any given program-
ming language, but Maven is one of the most commonly used in the Java world.

You may be interested in becoming familiar with Gradle as well, though.

Project Object Model

Maven relies on a configuration called a Project Object Model (POM) file.

Our main concern at this point is how to configure dependencies.

For simple projects, the building works out of the box!

Coordinates

To add a dependency, we simply need to provide the group id, artifact id and
version of the library you want to use.

We call these the coordinates of the artifact.

Coordinates II

For example, we might add a dependency on a course library like:

<dependencies>
<dependency>

<groupId>edu.murraystate</groupId>
<artifactId>BlobAPI</artifactId>
<version>1.0</artifactId>

8

</dependency>
</dependencies>

Transitivity

Note that, when you add a dependency, it may also need its own dependencies.

Fortunately, Maven artifacts are packaged with their own POM file, so Maven
will go ahead and download all dependencies transitively.

Repositories

Maven is configured, by default, to pull artifacts from Maven Central, which is
a public, centralized artifact repository.

You may, however, need to use custom, private repositories.

Repositories II

<repositories>
<repository>

<id>BlobAPI-mvn-repo</id>
<url>https://raw.github.com/MSUCSIS/csc430-maven/mvn-repo/</url>
<snapshots>

<enabled>true</enabled>
<updatePolicy>always</updatePolicy>

</snapshots>
</repository>

</repositories>

Design Patterns

Design Patterns

Design patterns are, ultimately, nothing more than the result of applying a few
object oriented principles which you should try to follow.

Design Patterns II

We will be learning those principles, but it is also good to study some of the
patterns that arise from their use so that we don’t have to reinvent the wheel.

9

Design Patterns III

Learning established patterns allow you to quickly get to a solution, and they
also provide you and other developers with a shared vocabulary that can be used
to discuss your code.

Design Patterns Are Garbage?

During the semester, we will also be discussing how design patterns are actually
kind of awful and may be seen as a “least awful” solution to problems in many
cases.

Strategy Pattern

The strategy pattern defines a family of algorithms, encapsulates
each, and makes them interchangeable. A strategy lets the algorithm
vary independent from clients that use it

Strategy Pattern II

Before we take that definition apart, let’s take a look at the object oriented
principles that lead to this pattern:

• Encapsulate what varies
• Program to interfaces
• Favor composition over inheritance

Encapsulate What Varies

Modifying code is usually pretty dangerous, because it can introduce regressions
in your code.

Encapsulate What Varies II

If we do not properly encapsulate our code, then simple changes can have far
reaching impact.

Accordingly, we would prefer to identify behavior that may vary in our code
and isolate it from code that does not vary.

10

Encapsulate What Varies III

If we do this successfully, then the non varying code can be written, tested, and
left alone forever.

…assuming our testing was sufficient

Example

For instance, let’s assume we have the following code

public class Duck{
private final int id;

public Duck(final int id{
this.id = id;

}

public String fly(){
// Let's imagine this is a more complex computation
return "I'm flying";

}

public int getId(){ return id; }
}

Example II

In this example, we can be relatively sure that the id related code will not
change. However, it is not unlikely that different ducks might fly differently.

Example III

So, we might do this instead

public class Duck{
private final int id;
private final FlyBehavior flyer = new FlyBehavior();

public Duck(final int id){
this.id = id;

}

public String fly(){ return flyer.fly(); }

11

public int getId(){ return id; }
}

Example IV

public class FlyBehavior{
public String fly(){

return "I'm flying";
}

}

Now, if the flying behavior needs to change, we still never have to handle the
Duck class again (almost…).

Example V

We still have a slight problem. Our Duck can only store the class FlyBehavior,
so the result isn’t that flexible.

How can we support different flying behaviors?

Program to an Interface

If we write code which uses specific, concrete types, we are stuck with those
types and have to manually modify our code, duplicate code and do other awful
things to use other types.

Program to an Interface II

If, instead, we program to more abstract interfaces, we can modify the behavior
of our code, without modifying the code itself.

Program to an Interface III

Note that, in this context, interface refers to a conceptual interface which can
be coded in the form of

• an interface
• an abstract class
• a common super type
• a function signature

12

Example VI

public class Duck{
private final int id;
private final FlyBehavior flyer;

public Duck(final int id, final FlyBehavior flyer){
this.id = id;
this.flyer = flyer;

}

public String fly(){ return flyer.fly(); }
public int getId(){ return id; }

}

Example VII

Now, we can create various subclasses for FlyBehavior and swap them in and
out to customize how ducks fly.

Even cooler, we can do this at runtime!

Favor Composition

When we want to extend the behavior of our code, we typically have two ways
to do it. We can either use inheritance or composition.

Inheritance

Using inheritance, A class A can extend another class B and override or add
methods to obtain the desired behavior.

We often say that such an instance of A “is a” B.

Composition

We could instead compose objects and include a field of type C inside of a class
B and the use that to change the behavior of the class B.

In this case, we would say that B “has a” C

13

Favor Composition II

We will learn that it is often valuable to write software so that different compo-
nents are “decoupled” from each other. This is almost always easier when using
composition.

Strategy Pattern III

At this point, we have reached a nice clean solution which is, in name, the
strategy pattern.

As you see, we were able to reach this point only using basic principles, but it
would have been easier to just jump straight to this design!

When To Use

You should consider using the strategy pattern when:

• Many classes differ only in some type of behavior
• You need different variations of an algorithm
• An algorithm uses data that clients shouldn’t know about
• A class defines many behaviors selected by a conditional

Problems

Some drawbacks of the strategy pattern include:

• clients must be familiar with the strategies
• various strategies may require different parameters
• If stateful, there could be a large number of classes required

Is It Garbage?

We know that an interface that contains a single method can be replaced with
a lambda expression.

This means we don’t have to define a special interface for the strategy: we just
need to specify a general function interface as a parameter.

Is It Garbage? II

Additionally, we are passing strategies into constructors, but we could simply
pass them into the methods where they are needed.

14

Storing them in a field is just a convenience.

Is It Garbage? III

At this point, we have essentially reached the basic concept of higher ordered
functions

A higher ordered function is a function which takes another function
as a parameter

Is It Garbage? IV

If the strategy pattern is basically just a complicated implementation of higher
ordered functions, then what is the point of jumping through extra hoops?

As Java incorporates more functional concepts, design patterns like this start
to become much less interesting.

Java Things

String Representation

Java provides a default toString() method for all Objects, but it leaves much to
be desired.

So, it’s usually a good idea to override the toString method to give a better
String representation.

String Representation II

This is particularly useful when debugging your code, as you can quickly get a
summary of the state of an Object without digging into the debugger data.

Building Strings

So, how should you build complex Strings?

For simple cases, it might be fine to do

final String s = "Point(" + x + "," + y + ")";

But it’s mainly fine because the compiler can optimize it. Why might this be
bad?

15

Building Strings II

To make things a bit cleaner, though, you may want to use String.format:

final String template = "Point(%d,%d)";
final String s = String.format(template,x,y);

Building Strings III

For building more complex strings that involve concatenation and iteration,
you’re probably better off using a StringBuilder:

final StringBuilder sb = new StringBuilder();
sb.append("Points:");
for(final Point p : points){

sb.append(p.toString());
sb.append(",");

}
sb.setLength(sb.length()-1);
final String s = sb.toString();

Review

What is the difference between calling

p1.equals(p2)

and

p1==p2

What Does Equality Mean?

When we talk about values being equal, we are usually making a lot of assump-
tions about what that means.

In reality, there is no good, universal definition of equality.

Equality

For instance, all of the following could meet the definition of two points being
equal:

• They are stored at the same memory location
• They have the same x and y components
• They represent the same point in space

16

Which one is correct?

Equality II

Java, by default, assumes that equals means two items are stored at the same
memory location. So, in the following code:

final Point p1 = new SimplePoint(10,10);
final Point p2 = new SimplePoint(10,10);

The objects p1 and p2 are not equal!

Structural Equality

Intuitively, this may seem odd. Accordingly, Java allows you to override the
equals method and make it work however you want.

Often, the best decision will be to use structural equality: two objects are equiv-
alent if they have the same structure and values.

Equals

For example, we could write the following method:

public boolean equals(final Point other){
if(getX() == other.getX() && getY() == other.getY()){

return true;
}else{

return false;
}

}

Equals II

So, is our equals method good enough?

Equals III

The equals method is actually defined with a parameter of type Object, so we
can’t expect to receive a Point!

Also, we have not checked for the possibility of receiving a null value!

17

Equals IV

public boolean equals(final Object other){
if(!(other instanceof SimplePoint)){

return false;
}else{

final SimplePoint p = (SimplePoint)other;
// Why ==?
return x==p.x && y==p.y;

}
}

Equals V

We can also short circuit the check by adding the following:

if(this==other){
return true;

}

Semantic Equivalence

We could instead attempt to use some sort of semantic equivalence, but it is
often dangerous to do so and may not return the intuitive result for your users.
For example,

final Currency brl = new BRL(1.0);
final Currency usd = new USD(0.247114);
// Should this be true due to the current fx rate?
brl.equals(usd);

Equals In General

Generally speaking, however we choose to define equals, it should be reflexive,
symmetric and transitive.

Which you, of course, remember from CSC-300, right?

Reflexive

∀𝑥 ∶ 𝑥 ≡ 𝑥

In other words, an object must equal itself.

18

Symmetric

∀𝑎, 𝑏 ∶ 𝑎 ≡ 𝑏 ⟺ 𝑏 ≡ 𝑎

In other words, objects must agree on being equal.

Transitive

∀𝑎, 𝑏, 𝑐 ∶ (𝑎 ≡ 𝑏 ∧ 𝑏 ≡ 𝑐) ⇒ 𝑎 ≡ 𝑐

In other words, we can infer equivalence via other equivalences which have an
“overlapping” element.

Inheritance

When we use inheritance and add fields to an object, it almost guarantees that
we have broken the equals method if we expect it to work with all the parent
and child classes.

Immutable Objects

Immutable objects also work really nicely with structural equality, because you
can literally swap equal instances with no impact on your code.

(assuming you don’t use ==, or reflection, or something else nasty)

Immutable Objects II

It also means that objects can be re-used. We could, for example, use the exact
same Point(0,0) object for every instance of a Duck at that location over time.

Immutable Objects III

If we have a small, finite, number of possibilities, we can just create a pool of
Points and never have to allocate a new one!

19

Immutable Objects IV

This explains the curious Integer.valueOf(int i) method. This:

final Integer x = new Integer(10);

Allocates a new Integer on every call. On the other hand:

final Integer x = Integer.valueOf(10);

Can cache common values and reuse them.

Don’t Forget Hash Code

The hashCode and equals methods are expected to work in concert:

If two objects are “equal”, then they must return the same hash code!

(This does not mean they must have different hash codes if they are unequal!)

Hash Code

With structural equality, this is not difficult: you just need to pass all fields
used for equality testing to Objects.hash(…) and it will compute a good hash
code for you.

Hash Code II

With more exotic definitions of equality, this becomes very difficult.

Also, with immutable objects, we only really need to compute the code once!

Gotchas

There are a lot of nice ways to shoot yourself in the foot when using Java. Let’s
take a look at some reasonable looking code and figure out why it may not be
so reasonable.

Equals

public boolean test(final String x){
return x=="something"

}

// ...

20

System.out.println(test(x));

What output will we see if x has the value “something”?

Equals II

Depending on the code and how the compiler optimizes, we may get true or
false. If x gets its value from a literal and the compiler optimizes the code
so that duplicate String literals are stored at the same location, we’ll get true.
Otherwise, false.

Casting Arrays

How’s this code?

final Object[] objects = {"hello","ola","Hallo"};
final String[] strings = (String[])objects;

Casting Arrays II

It’s awful and it’s guaranteed to throw an exception!

final String[] strings =
Arrays.asList(objects).toArray(new String[]);

Threading

public class X extends Thread{
private boolean go = true;
public void run(){

while(go){
// do something

}
}

public void dontgo(){
go = false;

}
}

21

Threading II

public static void main(final String[] args){
final Thread t = new X();
t.start();
t.dontgo();

}

Threading III

This code may never stop, because the memory modification from the main
thread is not guaranteed to be observed by all other threads (including the
actual thread itself!)

It’s only guaranteed to work if we make the variable volatile or insert synchro-
nization code.

More Threading

public class Y{
private int n;
public Y(final int n){

this.n=n;
}

public void test(){
if(n!=n){

throw new AssertionError();
}

}
}

More Threading II

Assuming we are sharing this object with other threads, what will happen when
we call test?

Are you sure?

More Threading III

In fact, this may throw an assertion error, because there is no guarantee that
both accesses to n will see the same value, even though only one value was

22

assigned! Why?

LOL

public class Lol{
public double value;

}

final Lol = new Lol();
Lol.value = 12121.0;

LOL II

Assuming this object is shared with other threads, what possible values might
they see?

LOL III

They could see 0.0, which is the default for a double.

They could see 12121.0, which is what it’s updated to.

…or they could see whatever you get from taking half the bits from 0.0 and half
the bits from 12121.0

** LOLOLOLOLOLOL **

Immutable Objects II

Of course, immutable objects using final variables avoids all of these problems!

Takeaway

Programming is awful and there’s no way you can write correct code without a
lot of hard work and help from tools, best practices, etc.

Also

Buy Java Concurrency in Practice before you try to write any multi-threaded
Java code in the real world.

If you aren’t using Java, make sure you look into the “memory model” of your
language: it’s almost guaranteed it’s a horror show as well!

23

https://learning.oreilly.com/library/view/java-concurrency-in/0321349601/

Observer Pattern

Observer Pattern

defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically

AKA: Publish-Subscribe, Dependents

OO Principle: Loose Coupling

Strive for loosely coupled designs between objects that interact.

Loose Coupling

• Allows objects to interact with minimal knowledge
• Changes to one component won’t impact another (within reason)
• Components can be added without requiring changes to code
• Turns dependencies into a runtime property instead of a static property

OO Principles

We will also be utilizing the previous principles we learned:

• Encapsulate what varies
• Favor composition over inheritance
• Program to interfaces

Strategy Pattern

Let’s think about how the strategy pattern works real quick, and see if we can
derive the observer pattern from it.

Strategy Pattern II

Whenever some action happens (e.g., a method call), we delegate to a strategy
which encapsulates the desired behavior.

24

Observer Pattern II

Whenever some action happens (e.g., an update), we notify an observer which
encapsulates the dependent behavior.

Sounds familiar…

Observer Pattern III

As long as we only have one dependency, we can see that the observer pattern
and strategy pattern are basically identical.

One-To-Many

So, how do we incorporate multiple dependencies into our strategy pattern?

We just add the ability to provide multiple strategy patterns to a subject!

One-To-Many II

public class Duck{
private final long id;
private final Observer observer1;
private final Observer observer2;

public Duck(long id,Observer o1,Observer o2,Observer o3){
// ...

}
public void fly(){

observer1.notifyOfFlight(id);
observer2.notifyOfFlight(id);

}
}

One-To-Many III

We will also typically provide the ability to subscribe and unsubscribe observers
at run times, though this is not particularly different from the strategy pattern
(though we often make strategy patterns final).

25

One-To-Many IV

public class Duck{
private final long id;
private final List<Observer> observers=new ArrayList<>();

public Duck(long id){
this.id = id;

}

//...
}

One-To-Many V

public class Duck{
//...
public void fly(){

for(final Observer o : observers){
o.notifyOfFlight(id);

}
}

}

So just use strategies?

No! While the essence of these two patterns are the same, the use cases for the
observer pattern often have common requirements (like (un)subscribing) and
specific semantics related to when notifications should occur, etc.

Strategy vs. Observer

Observers…

• Almost always have a greater number of dependents
• Have a looser coupling, because the intent of the dependent is unknown
• Focus more on the dependency and less on the computation

I.e., a subject does not care what the dependency is doing!

When To Use

You should consider using the observer pattern when:

26

• An abstraction has two aspects where one is dependent on the other.
• When a change in one components requires changes in others, but

which/how many is not known.
• When objects should be able to send/receive data without assumptions.

Problems

One issue with the observer pattern is that we really have no idea what depen-
dents are doing. If an observer performs a large amount of computation, or
cascades updates to its own observers, you can cause a huge performance hit!

Implementation Details

We also must decide whether we want to use a pull model or a push model for
our updates.

Pull

• Observers only receive an update notification and reference to the subject
• Observers may then query the subject for just the data they need
• Embraces the subjects ignorance of its dependents’ behaviors
• Could be less efficient for the observer, due to the overhead of gathering

data

Push

• All of the needed data is pushed to all observers
• Makes the coupling a bit tighter, perhaps
• Gives the subject more control over the data

Decorator Pattern

The Decorator Pattern

Attaches additional responsibilities to an object dynamically. Dec-
orators provide a flexible alternative to subclassing for extending
functionality.

AKA: Wrapper

27

OO Principle: Open/Closed

Classes should be open for extension, but closed for modification

The Decorator Pattern II

• Allows for extension at runtime.
• Allows you to modify the behavior of a class without actually changing it

– …and without it even being aware of the decorators existence!

Example

public interface Duck{
String fly();

}

Example II

public class BasicDuck implements Duck{
private final FlyStrategy strategy;
public BasicDuck(final FlyStrategy strategy){

this.strategy = strategy;
}

// ...
}

Example III

public class StrongDuck implements Duck{
private final Duck wrapped;
public StrongDuck(final Duck d){

this.wrapped = d;
}

public String fly(){
return wrapped.fly() + wrapped.fly();

}
}

28

The Decorator Pattern III

• Avoids an explosion of subclasses
– $ |base classes| \times |variations| $ (if we only use one variation)
– |𝑏𝑎𝑠𝑒𝑐𝑙𝑎𝑠𝑠𝑒𝑠| × 2|𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠| (any combination of variations)
– ∞ (if we allow repeated variations)

The Decorator Pattern IV

• Allows for added behavior before/after the components behavior
• Allows for the complete replacement of a component’s behavior
• Allows for enhancement of a given instance of a class.
• Completely transparent to clients (unless they’ve done something ugly)

Transparency

• A decorator and the object it decorates are unique
• They, naturally, are not the same class
• Accordingly, things like referential equality and casting may fail!

When To Use

• Behavior needs to be added to an object instance dynamically and trans-
parently

• Behaviors may need to be removed from an instance
• The number of variations make subclassing impractical (or impossible)
• The class definition is not available for subclassing.

Strategy Vs. Decorator

We can think of a decorator as a skin over an object that changes its
behavior. […] The strategy pattern is a good example of a pattern
changing the guts.

Strategy Vs. Decorator

• To use a strategy, the client must have knowledge of the strategy interface.
• When using a decorator, the client can be completely ignorant of its exis-

tence.

29

Factory Pattern

OO Principle: Dependency Inversion

Depend upon abstractions. Do not depend on concrete classes.

Dependency Inversion

• Both high level and low level classes should depend on abstractions.
• Variables should not reference concrete classes

– Which means we can’t use new!
• Classes should not derive from concrete classes
• Methods should not override base class implementations

…for some definition of “should”

DI and Factories

With past patterns, we have been abstracting and encapsulating behavior, de-
pendencies, etc. and making them runtime properties, increasing extensibility,
etc.

To eliminate coupling introduced by the new operator, we will now abstract
and encapsulate object instantiation using factories.

The Factory Method Pattern

Defines an interface for creating an object, but let’s subclasses decide
which class to instantiate. The Factory Method Pattern lets a
class defer instantiation to a subclass.

AKA: Virtual Constructor

Example

public interface Product{
// ...

}

public class Car implements Product{
// ...

}

30

public class Boat implements Product{
// ...

}

Example II

public abstract class Producer{
public Product produce(){

Product p = createProduct();
// do stuff with product
return p;

}

protected abstract Product createProduct();
}

Note that the Producer only has dependencies on the Product interface, just
like the Car and Boat classes. This class can now be closed for modification
since we have inverted our dependencies.

Example III

public CarProducer extends Producer{
protected Product createProduct(){

return new Car();
}

}

public BoatProducer extends Producer{
public Product createProduct(){

return new Boat();
}

}

Factory Method

• Eliminates the need to bind application specific classes in code
• Allows us to close our classes to modification
• Concentrates instantiation into fewer locations

31

Isolating Problems

A common goal of good design is to simply take the bad stuff you can’t elimi-
nate from your code entirely, and isolate it in the smallest number of locations
possible. This applies to:

• object instantiation
• side effects
• instanceof testing
• …

When to use

• When a class can’t anticipate the class of objects it must create
• When a class wants to delegate object instantiation to subclasses

Warning

If the only thing the subclass does is instantiate an object, then maybe we’re
just making our lives more difficuly for no reason.

If you are already subclassing, though, then it’s fine.

Abstract Factory Pattern

Provides an interface for creating families of related or dependent
objects without specifying their concrete classes.

Abstract Factory Pattern II

• Isolates concrete classes
• Makes it easy to exchange families of classes
• Promotes consistency

When To Use

• A system should be independent of how its products are created
• A system should be configured with one of multiple families of products
• A family of products must be used together
• You want to provide a library of products without exposing their imple-

mentation

32

Warning

If we need to add a new type of product, it can be difficult, because all product
families must be updated.

Adapter Pattern

Adapters

We briefly discussed adapters earlier in the semester when discussing decorators,
but didn’t go into much detail, because there is very little difference. For the
sake of completeness, let’s review briefly.

The Adapter Pattern

Converts the interface of a class to another interface expected by
clients. Lets classes work together that couldn’t otherwise because
of incompatible interfaces

AKA: Wrapper

Adapters II

As mentioned before, the main difference between decorators and adapters is
that decorators implement the same interface as what is being wrapped, while
adapters use a different interface.

Adapters III

Note that when using adapters we lose the benefits of transparency that we
obtain from using decorators.

Accordingly, we can “stack” decorators, but can only have one adapter of a
given kind.

The Facade Pattern

Provides a unified interface to a set of interfaces in a subsystem.
Defines a higher level interface that makes the subsystems easier to
use.

33

Facades

We can view facades as, basically, adapters which adapt multiple complex inter-
faces to a single, simple interface. In other words, they will often “wrap” more
than one object, and expose their functionality in an adapted interface.

Testing

Testing

No matter how good you are, you will make mistakes. Probably more mistakes
than you will ever know.

Testing II

Accordingly, it is necessary to not only do what you can to not make mistakes,
but also to rigorously test your code to confirm that you were successful.

Testing III

You will still have bugs, though…

Unit Tests

Our first line of defense will be unit tests: small, directed tests aimed to check
whether or not the smallest units of our code are working correctly.

Unit Tests II

Ideally, our development process would be driven by our unit tests.

This concept is referred to as Test Driven Development (TDD).

Test Driven Development

• First Law: Don’t write production code until you have failing tests
• Second Law: You may not write more test code than is necessary to create

a failure
• Third Law: You may not write more code than is necessary to fix the

failures.

34

Test Driven Development II

Alternatively, we can restate these laws as the following list of steps:

1. Write a test that fails
2. Fix the failure with minimal changes
3. Refactor and repeat

Test Driven Development III

If we do this well, then we know that all of the desired functionality has been
tested, because, otherwise, it would not exist.

Also, we now have a safety net to protect us from regressions in the code base.
If someone breaks our code, we should immediately know because of failing
tests.

Test Driven Development IV

Unfortunately, it doesn’t always go so smoothly. For instance, we have to write
our tests correctly, we have to test for unintended results as well as intended
results (which is more difficult to do!), and, in some cases, we can’t write unit
tests!

Swiss Cheese Model

In many fields, safety relies on the “Swiss Cheese” model:

There will always be holes in any layer of safety that you implement, but if you
have enough layers in places, it greatly decreases the odds that a hole will exist
in the entire system.

Swiss Cheese Model II

So, we try to use our brains to make sure we right good code, and we try to write
good tests. We will fail at both, but will hopefully come closer to eliminating
bugs than if we didn’t test at all.

Static Typing

Another simple layer to add, which a lot of people overlook, is using the type
system to model your problems.

35

Static Typing II

Strong Static Typing can often give you similar benefits as unit testing.

• The more you model your problem with types, the fewer invalid states will
compile

• …and the easier it is to refactor code with confidence

Static Typing III

In languages like Agda, Idris, Coq, you can model problems so completely that
compilation “guarantees” correctness (sort of…), because invalid states can not
be compiled.

In these languages, you are basically writing proofs.

Swiss Cheese Model III

This gives us:

• Our coding skills
• The type system/compiler
• Unit tests

To combat bugs in our code

Unit Tests III

So, our unit tests will allow us to ensure code performs as expected, to modify
code without causing regressions, and empowers us to refactor our and improve
our code without fear.

But how do we write unit tests…

Unit Tests Are Code

Obviously. The point, though, is that you should use all of the principles you
apply to writing good code in general when writing unit tests. You will need to
maintain, fix, and improve tests over time just like all other code!

36

Unit Tests Are Code II

If you don’t follow best practices, updating tests will become such a nightmare
that you will simply start deleting tests or just stop testing at all. Then regres-
sions creep in and the game is over.

F.I.R.S.T

• Fast: or they won’t be executed
• Independent: isolate tests so it’s clear what causes failures
• Repeatable: it should be trivial to test again and again
• Self-Validating: test should be reduced to pass/fail without need for

human validation
• Timely: should be written before/along with code being tested

What To Test

First, we need to identify what a given unit should do.

This sounds simple, but it isn’t!

We can easily create tests for the common, obvious cases, but we must also test
for the boundary cases.

Boundaries

For instance, if we are implementing a function to calculate the area of a rect-
angle given its height and width, what inputs should we test?

First, we would do something obvious like area(10,5)=50.

Boundaries II

But what happens if we are given negative values? What if we are given zeros?

We often forget about these types of inputs when writing code and just assume
we will “obvious” inputs.

Boundaries III

In this particular case, the logic is simple enough that we can easily address the
problem with a couple of tests and some branching in our code.

In general, though, we really need to focus on our domains.

37

Boundaries IV

In general, for an integer parameter, we should probably consider the following
values:

• positive values
• negative values
• zeros
• one
• negative one

Boundaries V

If we know we are using modular arithmetic, then we may want to test one
representative from each congruence class as well.

If we are working with mod m, then maybe a good set of tests would be

-m-1, -m, …, -2, -1, 0, 1, 2, …, m, m+1

Boundaries VI

Basically, what you want to do is think about the input types, identify boundary
values that are likely to cause different behavior, then test those boundary values,
near those boundary values, and far away from the boundaries in all directions.

Boundaries VII

And don’t forget null values!

Boundaries VIII

So what would good inputs be for a method with a List input?

What about a method that takes a Point as input?

What about String inputs?

Assertions

Once we have decided what we need to test, we will write a single unit test for
each interesting input and make an assertion about what its output should be.

38

Assertions II

Ideally, you should have one assertion per test. if not, all assertions should at
least be testing one aspect of your code.

Another Problem

How can we test code that requires a database lookup?

Problem II

As we stated previously, we want to isolate the code being tested from the rest
of the code base.

A database lookup, though, will require database libraries, data model code, a
running database, proper setup of the data in the database, etc.

Isolate At The Boundary

The first step should be to isolate the database code from your code. You can
do this by providing some interface that matches your data model and provides
convenience methods for lookups.

Isolate At The Boundary II

All SQL, driver configuration, etc. will be hidden behind this interface, so your
code that requires a lookup may simply call something like:

final User u = db.lookupUserById(10);

Isolate At The Boundary III

The db object can then be passed into our object or method and, since we have
“programmed to an interface,” we can replace this object with any instance of
the same interface.

Mocking

To properly isolate the our code from the database lookup when testing, we
could provide a mock for the database lookup object.

39

In other words, we can create a class that matches the necessary interface, but
does not actually interact with a database!

Mocking II

In our unit test, we will create a mock that is configured to return a specific
instance of the User class when the lookup method is called with the value 10,
and then we can write our test with the assumption that the lookup succeeds!

Mocking III

If we mock all dependencies in a method or class using this, approach, then we
know that any errors are caused solely by the method or class logic itself, and
not by dependencies.

Mocking IV

This also makes it easier to write tests, because a lot of code my be required to
create real instances that you could use, but mocks are usually rather trivial to
create.

Review: Object Oriented Programming

Let’s Review

For this course, being comfortable with object oriented programming concepts
and having a good understand of why they are beneficial is required.

Interfaces

Let’s start with interfaces!

First, what are interfaces?

Interfaces II

We could say that interfaces are “contracts” between the implementers of some
code and the users of that code.

40

Interfaces III

In other words, in an interface, you are stating what methods you guarantee
will be provided by any class implementing that interface.

Interfaces IV

Next, how do interfaces differ from classes?

Interfaces V

The old school explanation would be that interfaces can not contain imple-
mentations of methods. They may only contain method signatures.

(This isn’t actually true anymore, though)

Example

public interface Transform {
String apply(final String input);

}

Interfaces VI

This interface represents the abstract concept of code which performs String
transformations.

Note that this code does not do anything! It just states that any class imple-
menting this interface will provide a method called apply that will perform a
String transformation.

Classes

Now how about classes?

We mentioned above that classes contain actual implementation details. In
other words, they contain code that actually does stuff.

41

Example II

public class Reverse {
public String transform(final String input){

final StringBuilder sb = new StringBuilder();
for(int i=input.length-1; i>=0; i--){

sb.append(input.charAt(i));
}
return sb.toString();

}
}

Classes II

Is this a class?

Does it perform a String transformation?

Does it implement the Transform interface?

Example III

public class Reverse implements Transform {
public String apply(final String input){

// ...
}

}

Now we have stated that we are agreeing to the “contract” defined by Transform

Example IV

final Reverse transformer = new Reverse();
System.out.println(transformer.apply("Hello");

final Transform transformer = new Reverse();
System.out.println(transformer.apply("Hello"));

What’s the difference here? Why would we do this?

Polymorphism

At this point, there is no real reason to use interfaces at all. What happens,
though, when we decide to add another type of transformation to our code.

42

Example V

if(doReverse){
final Reverse reverse = new Reverse();
return reverse.apply("Hello");

}else if(doNoVowels){
final NoVowels noVowels = new NoVowels();
return noVowels.apply("Hello");

}else if ...

Polymorphism II

While all of these classes do different things, they all, at a high level, are trans-
forming Strings.

So, if we use the Transform interface for all of them, then we can unify them
with one variable.

Example VI

final Transform transform;
if(doReverse){

transform = new Reverse();
}else if(doNoVowels){

transform = new NoVowels();
}else if ...

return transform.apply("Hello");

Polymorphism III

This may not seem to impressive, but what if the logic choosing the transforma-
tion is not in our code?

What if we have to pass a transform into someone elses code?

What if we need a collection of transformations?

Example VII

final SomeoneElses code = new SomeoneElsesCode();
// We have no idea what this could possibly return!
final Transform transform = code.getTransform();
// ...but we can use it anyway, because we know its interface!

43

return transform.apply("Hello");

Example VIII

In someone else’s code:

public void setTransform(final Transform t){
transform = t;

}

In our code:

//They have no idea what this is
final Transformer tx = new Reverse();
//...but they can still use it!
code.setTransform(tx);

Example IX

final List<Transform> txs = new ArrayList<>();
txs.add(new Reverse());
txs.add(new NoVowels());
//...

Side Quest

What are all of the angle brackets?

final List<Transform> txs = new ArrayList<>();

Side Quest II

I guess we’re going to need to talk about generics.

We mentioned how an interface can be used to represent different classes by
referring to them as instances of the interface instead.

Side Quest III

We can also do this with an ancestor classes, if all of the classes have a common
ancestor. So, in the bad old days, a List would simply store Objects, because
Object is a common ancestor for all other classes.

44

Raw Types

This led to problems:

final List txs = new ArrayList();
txs.add(new Reverse());
// Not an error, because it's an object
txs.add("Hello");
// Have to cast, because we need a Transform, not an Object
final Transform tx = (Transform)txs.get(1);

Generics

To fix this, generics were introduced to allow for more type safe code to be
written:

final List<Transform> txs = new ArrayList<>();
txs.add(new Reverse());
//Now this is an error
txs.add("Hello");
//And a cast wouldn't be needed if the above didn't crash!
final Transform tx = txs.get(0);

Example X

Let’s improve our Transform interface now:

public interface Transform<T,U> {
U apply(final T input);

}

Now we’re not limited to String transformations!

Example XI

public class Reverse implements Transform<String,String> {
public String apply(final String input){

//...
}

}

Example XII

final List<Transform<String,String>> stringTransformers;

45

final List<Transform<Integer,Integer>> intTransformers;
final List<Transform<String,Integer>> stringToIntTransformers;

Can you feel the power??? Programming is so awesome.

Inheritance

Ok, let’s dial things back a bit and get back to some basics.

What is inheritance? How does it work?

Inheritance II

Previously, we implemented an interface.

Sometimes, though, we want to extend a class.

Inheritance III

When a class B extends a class A, then the class B will inherit the methods
and fields of class A.

Example XIII

public class ReReverse extends Reverse {

}

Example XIV

What will the following do? Will it compile?

final Reverse r1 = new ReReverse();
System.out.println(r1.apply("hello");

Example XIV

public class ReReverse extends Reverse {
public String apply(final String input){

final String reversed = super.apply(input);
final String reReversed = super.apply(reveresed);
return reversed;

46

}
}

Super?

Example XV

What will the following do?

final Reverse r1 = new ReReverse();
System.out.println(r1.apply("hello");
final ReReverse r2 = new Reverse();
System.out.println(r2.apply("hello");
final Transform t = new ReReverse();
System.out.println("hello");

Polymorphism IV

When we declare a variable’s type, that tells us what fields and methods must
exist, but it might not be the precise type of the value bound to that variable.

(The actual value may have more fields and methods!)

Polymorphism V

When we call a method declared in the parent class, the JVM will determine,
at run time, what the actual type of the value is, and will use this information
to select the correct implementation of the called method.

What is the correct implementation?

Polymorphism VI

If the child class has not overridden the method, then the parent class will be
checked for an implementation.

If the child class has overriden the method, then the implementation in the
child class is chosen.

Remember, though, that you can have several levels of inheritance!

47

Access Modifiers

Don’t forget that access modifiers affect what fields and methods are visible to
children!

If, for example, a parent class declares a private field, the child can not access
it!

Access Modifiers II

none private protected public
class Y Y Y Y

package Y N Y Y
subclass N N Y Y
world N N N Y

Spooky!

A common mistake students (and professionals!) make is to assume that the
access modifiers apply to instances of a class. This is not true!

For instance, a private field in class A is visible ot every instance of A!

Example XVI

For example, this code is perfectly valid!

public class A {
private final int x;

//...

public void compareXs(final A anotherA){
// works even though x is private!
return x==anotherA.x;

}
}

Abstract Classes

Let’s circle back around to some of the basics:

An interface (sort of) only provides method signatures.

48

A class must be completely implemented.

An abstract class is when you want something in between.

Example XVII

public abstract class Censor
implements Transform<String,String> {

public abstract List<String> getBadWords();

public String apply(String input){
for(final String word : badWords){

input = input.replace(word, "!!!")
}
return input;

}
}

Now we can create different variations by subclassing and implementing getBad-
Words.

Inheritance IV

What if we want to inherit from two classes?

Inheritance V

You can’t!

You can implement several interfaces, but you can only extend one class (con-
crete or abstract).

However…

Default Methods

You can now, actually, provide “default” implementations of methods in inter-
faces.

Which means that you can often accomplish what you were trying to do with
two parent classes by instead implementing two interfaces with default methods.

49

Default Methods II

There are, however, limitations. First, remember that you can only store static,
constant fields in an interface. If you need instance data for your default
methods, you are out of luck.

Default Methods III

You can, though, add a getter to the interface for the instance data, and use
that in your default method.

Then implementers will declare their own instance fields and implements the
getter.

Example XVII

public interface Censor extends Transform<String,String> {
List<String> getBadWords();

default String apply(String input){
for(final String bad : getBadWords()){

input = input.replace(bad, "!!!");
}
return input;

}
}

Implement or Extend

Another common mistake is to try and implement an interface in another inter-
face. This makes no sense, because you aren’t (generally) providing an imple-
mentation!

So, interfaces extend other interfaces!

Multiple Interfaces

An interesting use for multiple interfaces is to create an interface for each kind
of behavior that might be needed, and mixing them together.

50

Example XVIII

public interface Labeled {
public String getLabel();

}

public interface Logged {
public List<String> getLog();

}

Example XVIV

public class Reverse
implements Transform<String,String>, Labeled, Logged {

private final List<String> log = new ArrayList<>();

public String getLabel(){return "Reverse (Transform)";}
public List<String> getLog(){return log;}

public String apply(final input){
log.add("Starting transform of input: " + input);
//...
log.add("Transform complete:" + result);
return result;

}
}

Multiple Interfaces II

So, in addition to being able to use this class wherever we need a Transform,
we can use it anywhere we expect, for example, instances with a label.

Multiple Interfaces III

For example, imagine a UI where we can select operations to perform. Some
might be transformers, other might not be, but we can put them all in a com-
mon UI widget with a nicely displayed label if they all implement the Labeled
interface!

51

instanceof

At runtime, though, we may not know what interfaces are implemented, so we
will need to check using the instanceof operator.

Example XIX

public void doTransform(final Transform<String,String> t){
final String input = getInput();
final String output = t.apply(input);
if(t instanceof Logged){

final Logged logged = (Logged) t;
printLog(logged.getLog());

}
writeOutput(output);

}

Appendix: Lambda Expressions

Lambda Expressions

In this appendix, we will discuss interfaces, anonymous classes, and lambda
expressions which are becoming a more commonly used feature in Java (and
other languages) and allow for writing incredibly succinct, clear code.

Interfaces, Again

In order to understand lambda expressions, we will start with interfaces and
slowly work our way to proper lambda expressions.

An Interface

Let’s use the Transform interface from our Object Oriented review:

public interface Transform {
String apply(final input String);

}

52

Implementations

We can use this interface to implement types of Transformers.

public class ToCaps implements Transform {
public String apply(final String input){

return input.toUpperCase();
}

}

Instances

Once we have a concrete class defined, we would typically create and use in-
stances as follows:

final Transform tx = new ToCaps();
final String result = tx.apply("hello");
return result;

Anonymous Classes

Sometimes, though, we will only be creating instances for a class in one location
in our code. Creating another file and another class is overkill, so instead we
could use an anonymous class.

Anonymous Classes II

final Transform tx = new Transform(){
public String apply(final String input){

return input.toUpperCase();
}

};
final String result = tx.apply("hello");
return result;

Anonymous Classes III

Basically, this allows us to declare the same class inline.

It’s “anonymous,” because it no longer has a name.

(it doesn’t need one, because we are only referencing this class here!)

53

Going Further

If you look at the declaration of the anonymous class, you see that we have
declared the variable to be a Transform, so in theory, we shouldn’t have to tell
the compiler we are creating a Transform.

Going Further II

This won’t actually compile, but you should be able to see how the compiler
could be implemented so that it would.

final Transform tx = {
public String apply(final String input){

return input.toUpperCase();
}

};
final String result = tx.apply("hello");
return result;

Going Further III

Also, since there is only one method in the Transform interface, it seems like
we should also be able to leave the method name, parameter type, return type,
and access modifier out.

final Transform tx = {
(input){

return input.toUpperCase();
}

};

final String result = tx.apply("hello");
return result;

Lambda Expression

Now, if we just eliminate unnecessary braces and tweak the syntax a bit, we can
arrive at the following, which will compile.

final Transform tx = (input)->{
return input.toUpperCase();

};

final String result = tx.apply("hello");
return result;

54

Lambda Expression II

In this particular case, since there is only a single statement in the method body,
we can be even more concise.

final Transform tx = (input)->input.toUpperCase();

final String result = tx.apply("hello");
return result;

Lambda Expressions III

And since there is only a single parameter, we can do a little better.

final Transform tx = input->input.toUpperCase();

final String result = tx.apply("hello");
return result;

Lambda Expressions IV

This may not seem that interesting, but let’s look at a more complex example:

public class Transformer {
private final Transform transform;
public Transformer(final Transform tx){

this.transform = tx;
}

public List<String> transform(final Source source){
final List<String> output = new ArrayList<>();
for(final String input : source){

output.add(transform.apply(input));
}
return output;

}
}

Lambda Expressions V

Now we can write really succinct code like:

private final Source = getSource();
final Transformer toUpper =

new Transformer(s->s.toUpperCase());

55

toUpper.transform(source);
final Transformer toLower =

new Transformer(s->s.toLowerCase());
toLower.transform(source);

GUI

…or maybe you have experienced the pain of writing a bunch of ActionListeners?

button.addActionListener(
event->JOptionPane.showMessageDialog(this, "I was clicked!")

);

Even Better

In addition to lambda expressions we can also use method references to avoid
even more boiler plate code!

Even Better II

Which gives us:

final Transformer toUpper =
new Transformer(String::toUpperCase);

Instead of

final Transformer toUpper =
new Transformer(s -> s.toUpperCase());

Functions

The most generalized version of this code would not even specify that a Trans-
form is needed. Instead, the constructor would be:

public Transformer(Function<String,String> f){
//...

}

Java provides Function and BiFunction interfaces to represent any one argument
or two argument method, class, etc.

56

Also

For zero argument functions, Java provides the Supplier interface:

final Supplier<String> s = ()->"Hello!";

And for a “function” with no return, the Consumer interface:

final Consumer<String> c = s->System.out.println(s);

And Finally

If you want to pass a computation that has no parameters and no output, then
you can use the Runnable interface:

new Thread(
()->{

while(true){
System.out.println("JavaScript Sucks");

}
}

).start();

Closures

One other interesting thing you can do with anonymous classes and lambda
expressions is use them to capture variables in their closures.

Closures II

public Transformer create(String message, int count){
return new Transformer(input->{

final StringBuilder sb = new StringBuilder();
for(int i=0; i<count; i++){

sb.append(text);
}

});
}

final Transformer t = create("hi",4);
t.transform(source); //message and count are out of scope!?

57

Closures III

This works, because any variable referenced in the lambda expression is captured
and will be accessible for the life of the expression!

Appendix: Don’t Null

Billion-Dollar Mistake

I call it my billion-dollar mistake. It was the invention of the null
reference in 1965. […] I couldn’t resist the temptation to put in a
null reference, simply because it was so easy to implement.

Billion-Dollar Mistake II

In reality, 1 billion dollars is a huge understatement of the financial damage
caused by null references.

Most developers spend a comically large amount of time chasing null pointers.

Billion-Dollar Mistake III

…but you don’t have to!

This one secret will save you time and money–more than the cost of this course!

What’s The Problem?

Many will tell you that null pointers aren’t a problem if you’re a good program-
mer.

final User user = getUser(10);
final String name;

if(user !=null){
name = user.getName();

}else{
name = "Not Found";

}

58

The Problems

Problem: Every method could, possibly, return a null value, so to be safe you
need to check the result of every method.

The “good programmers” don’t do this, though. They “know” which methods
need to be tested…which is why they, too, get null pointer exceptions.

The Problems II

Problem: If you don’t want to test every method, you need to read the docu-
mentation for methods to determine which ones can return null.

The “good programmers” don’t do this either…which is why they, too, get null
pointer exceptions.

The Problems III

Problem: If you do read the documentation, it is imperative that the docu-
mentation is correct and complete.

The “good programmers” don’t write and update documentation sufficiently,
though…which is why they, too, get null pointer exceptions.

The Good Programmers

Of course, the “good programmers” always have excuses for why their null
pointer problems are not their fault and continue to have null pointer problems.

The Dumb Programmer

Meanwhile, the “incompetent” programmer acknowledges his or her inability to
cope with complex systems and asks the compiler for help.

public Optional<User> getUser(int id){
if(userExists(id)){

return Optional.of(new User(id));
}else{

return Optional.empty();
}

}

59

The Dumb Programmer II

Now, this won’t even compile!

final User user = getUser();

The compiler complains, because the return value is not a User. But we need
an User…

The Dumb Programmer III

final Optional<User> maybeUser = getUser(10);
final String name;
if(maybeUser.isPresent()){

name = maybeUser.get().getName();
}else{

name = "Not Found";
}

Did we just do the same thing as the good programmer?

The Difference

Sort of. There is one immediate difference, though: Now we are forced by the
compiler to address the possibility of no value being returned.

This is already a big gain with only slightly more code needed than the good
programmer’s approach.

The Difference II

If your team is on board with never returning null values (which is significantly
easier than avoiding null values returned from methods unexpectedly), then you
can use Optional values to eliminate null pointer exceptions from your code.

Java Is Not Great

Java, unfortunately, does not prevent you from returning a null value even if
the return type is an Optional value.

You should have used Haskell.

60

Bonus

Another bonus to this approach is that the return type itself documents the
fact that the method may not return a value. Even better, if this doc-
umentation changes, the compiler will force you to rethink your use of the
method!

What About Get()

Of course, you could just assume that the method returns a value and write:

final String name = getUser(10).get().getName();

Which isn’t any better than

final String name = getUser(10).getName()

Using the old code.

Psychology

The big difference, though, is psychology. If you know the meaning of an Op-
tional return type, and you decide that, even though this method is guaranteed
to sometimes not return a value, you are going to roll the dice, then there is lit-
erally no programming language feature that can help you, because you willfully
do bad things.

Psychology II

On the other hand, the developer who doesn’t check for a null is often just being
careless. There is no red flag being waived in his or her face about the certain
danger.

So, Optional return types flip the responsibility around.

Psychology III

With null values, you have to be responsible enough to make sure you don’t
screw up.

With Optional values, you are almost forced to write good, safe code and have
to male a conscious decision to do the bad thing.

(Some even argue that get() should not exist in the Optional class)

61

The Problems IV

Problem: Why are we returning a default value of “Not Found”? If the User
does not exist, then why should the name exist? We could just return a null,
but that’s bad!

Instead, we should just return an Optional name!

A Mess

final Optional<User> maybeUser = getUser(10);
if(maybeUser.isPresent()){

final User u = maybeUser.get();
return Optional.of(u.getName());

}else{
return Optional.empty();

}

Am I Trolling?

At this point you should be ready to revolt and assume I am trolling you.

Are you really, supposed to litter Optional wrappers throughout every line of
code?

Improvement

No! Higher order functions will rescue us and make life beautiful.

The Optional class defines a method called map which accepts a function as
its argument.

Improvement II

More specifically, for the type Optional of type T, it accepts a function that
takes an object of type T and returns some other type of object.

Improvement III

Using this, we can write the following instead:

return getUser(10).map(u->u.getName());

62

If the Optional contains a value, the function is applied to it, resulting in an
Optional containing an String. Otherwise, the whole thing is just an empty
Optional.

The Dumb Programmer Wins

Now, we have obtained safety and simpler code. Good programmers and their
null checks have been thoroughly defeated at this point.

Going Further

What if the getName() method itself returns an *Optional*

final Optional<String> result =
getUser(10).map(u->u.getName());

This doesn’t compile. Why?

Improvement IV

The Optional type also provides a method flatMap that takes a function which
returns an Optional value and “flattens” the Optional layers so that there are
no nested Optionals

Awesome

Now, we can write safe code in the face of missing values quite simply:

return getUser(10)
.flatMap(u -> u.getName())
.map(n -> n.toUpperCase())
.filter(n -> n.equals("PHILLIP"))
.map(n->"User: " + n)

Improvement V

We can do a little cleanup using method references

return getUser(10)
.flatMap(User::getName)
.map(String::toUpperCase)
.filter(n -> n.equals("PHILLIP"))
.map(n->"User: " + n)

63

	About the Course
	Overview
	The Plan
	What do I know about the real world?
	What people say about CSC-430
	What people say about CSC-430
	Grading
	Textbooks
	Resources II
	Help
	Help II
	Help III
	Important Class Policies
	Staying Up To Date
	Final Note

	How You Code Now
	Why Are We Here?
	Code Volume
	Code Volume II
	Code Volume III
	Code Volume IV
	Code Volume V
	Testing
	Testing II
	Testing III
	Building
	Building II
	Building III
	Maintenance
	Maintenance II
	Maintenance III
	Maintenance IV
	Solution
	Course Thesis

	Intro To Maven
	Maven
	Maven II
	Dependency Management
	Dependency Management II
	Dependency Management III
	Dependency Management IV
	Dependency Management V
	Dependency Management VI
	Dependency Management VII
	Build Tools
	Build Tools II
	Automation
	Automation II
	Automation III
	Maven III
	Project Object Model
	Coordinates
	Coordinates II
	Transitivity
	Repositories
	Repositories II

	Design Patterns
	Design Patterns
	Design Patterns II
	Design Patterns III
	Design Patterns Are Garbage?
	Strategy Pattern
	Strategy Pattern II
	Encapsulate What Varies
	Encapsulate What Varies II
	Encapsulate What Varies III
	Example
	Example II
	Example III
	Example IV
	Example V
	Program to an Interface
	Program to an Interface II
	Program to an Interface III
	Example VI
	Example VII
	Favor Composition
	Inheritance
	Composition
	Favor Composition II
	Strategy Pattern III
	When To Use
	Problems
	Is It Garbage?
	Is It Garbage? II
	Is It Garbage? III
	Is It Garbage? IV

	Java Things
	String Representation
	String Representation II
	Building Strings
	Building Strings II
	Building Strings III
	Review
	What Does Equality Mean?
	Equality
	Equality II
	Structural Equality
	Equals
	Equals II
	Equals III
	Equals IV
	Equals V
	Semantic Equivalence
	Equals In General
	Reflexive
	Symmetric
	Transitive
	Inheritance
	Immutable Objects
	Immutable Objects II
	Immutable Objects III
	Immutable Objects IV
	Don't Forget Hash Code
	Hash Code
	Hash Code II
	Gotchas
	Equals
	Equals II
	Casting Arrays
	Casting Arrays II
	Threading
	Threading II
	Threading III
	More Threading
	More Threading II
	More Threading III
	LOL
	LOL II
	LOL III
	Immutable Objects II
	Takeaway
	Also

	Observer Pattern
	Observer Pattern
	AKA: Publish-Subscribe, Dependents

	OO Principle: Loose Coupling
	Loose Coupling
	OO Principles
	Strategy Pattern
	Strategy Pattern II
	Observer Pattern II
	Observer Pattern III
	One-To-Many
	One-To-Many II
	One-To-Many III
	One-To-Many IV
	One-To-Many V
	So just use strategies?
	Strategy vs. Observer
	When To Use
	Problems
	Implementation Details
	Pull
	Push

	Decorator Pattern
	The Decorator Pattern
	OO Principle: Open/Closed
	The Decorator Pattern II
	Example
	Example II
	Example III
	The Decorator Pattern III
	The Decorator Pattern IV
	Transparency
	When To Use
	Strategy Vs. Decorator
	Strategy Vs. Decorator

	Factory Pattern
	OO Principle: Dependency Inversion
	Dependency Inversion
	DI and Factories
	The Factory Method Pattern
	Example
	Example II
	Example III
	Factory Method
	Isolating Problems
	When to use
	Warning
	Abstract Factory Pattern
	Abstract Factory Pattern II
	When To Use
	Warning

	Adapter Pattern
	Adapters
	The Adapter Pattern
	Adapters II
	Adapters III
	The Facade Pattern
	Facades

	Testing
	Testing
	Testing II
	Testing III
	Unit Tests
	Unit Tests II
	Test Driven Development
	Test Driven Development II
	Test Driven Development III
	Test Driven Development IV
	Swiss Cheese Model
	Swiss Cheese Model II
	Static Typing
	Static Typing II
	Static Typing III
	Swiss Cheese Model III
	Unit Tests III
	Unit Tests Are Code
	Unit Tests Are Code II
	F.I.R.S.T
	What To Test
	Boundaries
	Boundaries II
	Boundaries III
	Boundaries IV
	Boundaries V
	Boundaries VI
	Boundaries VII
	Boundaries VIII
	Assertions
	Assertions II
	Another Problem
	Problem II
	Isolate At The Boundary
	Isolate At The Boundary II
	Isolate At The Boundary III
	Mocking
	Mocking II
	Mocking III
	Mocking IV

	Review: Object Oriented Programming
	Let's Review
	Interfaces
	Interfaces II
	Interfaces III
	Interfaces IV
	Interfaces V
	Example
	Interfaces VI
	Classes
	Example II
	Classes II
	Example III
	Example IV
	Polymorphism
	Example V
	Polymorphism II
	Example VI
	Polymorphism III
	Example VII
	Example VIII
	Example IX
	Side Quest
	Side Quest II
	Side Quest III
	Raw Types
	Generics
	Example X
	Example XI
	Example XII
	Inheritance
	Inheritance II
	Inheritance III
	Example XIII
	Example XIV
	Example XIV
	Example XV
	Polymorphism IV
	Polymorphism V
	Polymorphism VI
	Access Modifiers
	Access Modifiers II
	Spooky!
	Example XVI
	Abstract Classes
	Example XVII
	Inheritance IV
	Inheritance V
	Default Methods
	Default Methods II
	Default Methods III
	Example XVII
	Implement or Extend
	Multiple Interfaces
	Example XVIII
	Example XVIV
	Multiple Interfaces II
	Multiple Interfaces III
	instanceof
	Example XIX

	Appendix: Lambda Expressions
	Lambda Expressions
	Interfaces, Again
	An Interface
	Implementations
	Instances
	Anonymous Classes
	Anonymous Classes II
	Anonymous Classes III
	Going Further
	Going Further II
	Going Further III
	Lambda Expression
	Lambda Expression II
	Lambda Expressions III
	Lambda Expressions IV
	Lambda Expressions V
	GUI
	Even Better
	Even Better II
	Functions
	Also
	And Finally
	Closures
	Closures II
	Closures III

	Appendix: Don't Null
	Billion-Dollar Mistake
	Billion-Dollar Mistake II
	Billion-Dollar Mistake III
	What's The Problem?
	The Problems
	The Problems II
	The Problems III
	The Good Programmers
	The Dumb Programmer
	The Dumb Programmer II
	The Dumb Programmer III
	The Difference
	The Difference II
	Java Is Not Great
	Bonus
	What About Get()
	Psychology
	Psychology II
	Psychology III
	The Problems IV
	A Mess
	Am I Trolling?
	Improvement
	Improvement II
	Improvement III
	The Dumb Programmer Wins
	Going Further
	Improvement IV
	Awesome
	Improvement V

